

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Oberon Meeting table

Kinnarps_

Owner of the declaration: Kinnarps AB

Product: Oberon Meeting table

Declared unit: 1 pcs

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR 026:2022 Part B for Furniture

Program operator: The Norwegian EPD Foundation

Declaration number: NEPD-9545-9171

Registration number: NEPD-9545-9171

Issue date: 31.03.2025

Valid to: 31.03.2030

EPD software: LCAno EPD generator ID: 875055

The Norwegian EPD Foundation

General information

Product

Oberon Meeting table

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-9545-9171

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs Oberon Meeting table

Declared unit (cradle to gate) with option:

A1-A3, A4, A5, B2, B3, B4, C1, C2, C3, C4, D

Functional unit:

Production of one table, provided and maintained for a period of 15 years.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

Kinnarps AB Contact person: Johanna Ljunggren - Corporate Sustainability Manager Phone: +46 515 381 21 e-mail: johanna.ljunggren@kinnarps.se

Manufacturer:

Kinnarps AB

Place of production:

Kinnarps AB Industrigatan 521 88 Kinnarp, Sweden

Management system:

ISO 9001, ISO 14001, ISO 45001

Organisation no:

556256-6736

Issue date:

31.03.2025

Valid to: 31.03.2030

Year of study: 2024

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Rickard Thil

Reviewer of company-specific input data and EPD: Isabell Vesterberg

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Oberon meeting table, OBPM70, with pillar leg 740 mm, in white laminate finish.

Oberon meeting and conference tables are part of a comprehensive table series designed for versatility and durability. This range offers exceptional flexibility, allowing you to mix and match table tops in various sizes, shapes, and materials, and combining with modern meeting technology. Additionally, you can combine different desktops with a variety of underframes and metal legs to suit your needs.

Read more: https://www.kinnarps.com/products/desks--tables/meeting-tables/oberon-meeting/

Product specification

Choose from many types of materials such as laminate, linoleum, and wood veneer. The tabletops are also available in eleven different stains, specially selected in consultation with leading architects and interior designers. Oberon meeting and conference tables are part of a table series consisting of desks, meeting tables, coffee tables, and café tables for designing complete environments.

This EPD includes the following variants:

Oberon Pillar table OBPL70, Ø700 mm, height 550 mm, laminate finish Oberon Pillar table OBPL70, Ø700 mm, height 550 mm, veneer finish Oberon Pillar table OBPL70, Ø700 mm, height 550 mm, HPL finish Oberon Pillar table OBPL90, Ø900 mm, height 550 mm, laminate finish Oberon Pillar table OBPL110, Ø1100 mm, height 550 mm, laminate finish Oberon Pillar table OBPL77, 700x700 mm, height 550 mm, laminate finish Oberon Pillar table OBPL77, 700x700 mm, height 550 mm, laminate finish Oberon Gas Pillar table OBPL88, 800x800 mm, height 550 mm, laminate finish Oberon Gas Pillar table OBPG77, 700x700 mm, height 710-1125 mm, laminate finish Oberon Pillar table OBPN77, 700x700 mm, height 900 mm, laminate finish Oberon Pillar table OBPH77, 700x700 mm, height 1050 mm, laminate finish Oberon Conference table OBPM200CO, 2000x1200 mm, height 740 mm, laminate finish Oberon Conference table OBPM1809, 1800x900 mm, height 740 mm, laminate finish Oberon Conference table OBPM2412-9, 2400x1200 mm, height 740 mm, laminate finish

Materials	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Metal - Steel	11,62	58, 52	1,80	15,50
Plastic - Acrylonitrile butadiene styrene (ABS)	0,16	0,83	0.00	0.00
Powder coating	0,063	0,31	0.00	0.00
Wood - Chipboard	8,0080	40,33	3,60	45.00
Total	19,85	100,00	5,41	

Technical data:

Certifications: Swedish Möbelfakta

Fulfilled technical standards: EN 15372 Furniture - Strength, durability and safety - Requirements for non-domestic tables

Fulfilled emission standards: Ansi/BIFMA M7.1:2011 Indoor Air Comfort Gold M1

Market: Mainly Europe, but is available worldwide.

Reference service life, product

15 years.

Reference service life, building

LCA: Calculation rules

Declared unit: 1 pcs Oberon Meeting table

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Metal - Steel	ecoinvent 3.6	Database	2019
Metal - Steel	SSAB	Specific	2020
Plastic - Acrylonitrile butadiene styrene (ABS)	ecoinvent 3.6	Database	2019
Powder coating	ecoinvent 3.6	Database	2019
Wood - Chipboard	Modified ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage			Constr installati	uction on stage	Use stage						End of I	ife stage		Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	Х	Х	Х	MND	MND	MND	Х	Х	Х	Х	Х

System boundary:

The metal components are produced at Kinnarps' facility in Jönköping. Wooden components are manufactured at Kinnarps' production site in Kinnarp, where the final assembly takes place. The completed product is then shipped to the customer from this location.

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

The product is shipped to the consumer in Kinnarps' trucks with blankets and cardboard sheets as packaging material which is returned to the factory after delivery and reused. This method saves 270 kg of packaging material per container and enables 50% more products to be transported in each truck. Kinnarps' trucks have a load efficiency of approximately 87 % and are run on a fuel with renewable content (HVO). For more information about sustainability at Kinnarps, visit https://www.kinnarps.com/about-kinnarps/sustainability/

The maintenance scenario includes wet-wiping once a week for the whole reference service life.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, HVO, EURO 6 (kgkm)	36,7 %	300	0,043	l/tkm	12,90
Maintenance (B2)	Unit	Value			
Water, tap water (m3)	m3	0,78			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	85	0,023	l/tkm	1,96
Waste processing (C3)	Unit	Value			
Waste treatment per kg Plastics, Mixture, municipal incineration with fly ash extraction (kg)	kg	0,16			
Waste, materials to recycling (kg)	kg	3,94			
Waste treatment per kg Wood, incineration with fly ash extraction (kg)	kg	8,0080			
Waste treatment per kg Non-hazardous waste, incineration with fly ash extraction - C3 (kg)	kg	0,063			
Waste treatment per kg Scrap steel, incineration with fly ash extraction (kg)	kg	11,62			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Plastics, Mixture, municipal incineration with fly ash extraction, process per kg ashes and residues - C4 (kg)	kg	0,0057			
Landfilling of ashes from incineration of Wood, process per kg ashes and residues (kg)	kg	0,092			
Landfilling of ashes from incineration of Non- hazardous waste, process per kg ashes and residues - C4 (kg)	kg	0,014			
Landfilling of ashes and residues from incineration of Scrap steel (kg)	kg	7,67			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity, in Norway (MJ)	MJ	5,85			
Substitution of primary steel with net scrap (kg)	kg	2,14			
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	88,65			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environme	nvironmental impact										
	Indicator		Unit		A1-A3	A4	A5	B2	B3		
P	GWP-total		kg CO ₂ -e	eq	2,55E+01	2,33E-01	0	2,69E-01	0		
P	GWP-fossil		kg CO ₂ -e	eq	3,87E+01	2,33E-01	0	2,67E-01	0		
P	GWP-biogenic		kg CO ₂ -e	eq	-1,32E+01	3,94E-04	0	1,68E-03	0		
P	GWP-luluc		kg CO ₂ -e	eq	1,00E-01	3,63E-04	0	4,35E-04	0		
Ò	ODP		kg CFC11 -	-eq	1,85E-06	4,80E-08	0	2,37E-08	0		
(All	AP		mol H+ -e	eq	1,47E-01	1,63E-03	0	1,56E-03	0		
æ	EP-FreshWater		kg P -ec	1	8,78E-04	8,54E-06	0	2,14E-05	0		
æ	EP-Marine		kg N -ec	1	3,21E-02	4,32E-04	0	2,48E-04	0		
÷	EP-Terrestial		mol N -e	q	3,75E-01	4,83E-03	0	2,88E-03	0		
	РОСР		kg NMVOC	-eq	7,94E-01	1,77E-03	0	9,05E-04	0		
e An	ADP-minerals&metals ¹		kg Sb-eo	7	4,11E-04	2,83E-05	0	7,48E-06	0		
B	ADP-fossil ¹		MJ	MJ		4,92E+00	0	4,57E+00	0		
\triangle	1		3		1 15F+04	146F+01	0	8.18F+01	0		
%	WDP		m-		1,152.01	1, 102 - 01	-	0,102.01	-		
<u>(%)</u>	Indicator		Unit	B4	C1	C2	C3	C4	D		
	Indicator GWP-total		Unit kg CO ₂ -eq	B4 0	C1 0	C2 1,48E-01	C3 1,42E+01	C4 8,63E-02	D -2,89E+00		
P P	GWP-fossil		m ⁻ Unit kg CO ₂ -eq kg CO ₂ -eq	B4 0 0	C1 0 0	C2 1,48E-01 1,48E-01	C3 1,42E+01 6,91E-01	C4 8,63E-02 8,63E-02	D -2,89E+00 -2,87E+00		
P P P	GWP-fossil GWP-biogenic		m ⁻ Unit kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq	B4 0 0 0	C1 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05	C3 1,42E+01 6,91E-01 1,35E+01	C4 8,63E-02 8,63E-02 6,47E-05	D -2,89E+00 -2,87E+00 -2,36E-03		
¢	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc		Unit kg CO2 - eq kg CO2 - eq kg CO2 - eq kg CO2 - eq	B4 0 0 0 0	C1 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05	D -2,89E+00 -2,87E+00 -2,36E-03 -1,88E-02		
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP		Unit kg CO2 - eq	B4 0 0 0 0 0	C1 0 0 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05 3,57E-08	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05 1,52E-08	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05 2,68E-08	D -2,89E+00 -2,87E+00 -2,36E-03 -1,88E-02 -3,74E-02		
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP		Unit kg CO2 - eq mol H+ - eq	B4 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05 3,57E-08 4,77E-04	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05 1,52E-08 1,76E-03	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05 2,68E-08 6,11E-04	D -2,89E+00 -2,37E+00 -2,36E-03 -1,88E-02 -3,74E-02 -1,59E-02		
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater		Unit kg CO2 - eq kg P - eq	B4 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05 3,57E-08 4,77E-04 1,18E-06	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05 1,52E-08 1,76E-03 3,64E-06	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05 2,68E-08 6,11E-04 8,59E-07	D -2,89E+00 -2,87E+00 -2,36E-03 -1,88E-02 -3,74E-02 -1,59E-02 -1,91E-04		
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine		Unit kg CO2 - eq kg P - eq kg N - eq	B4 0 0 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05 3,57E-08 4,77E-04 1,18E-06 1,04E-04	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05 1,52E-08 1,76E-03 3,64E-06 8,00E-04	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05 2,68E-08 6,11E-04 8,59E-07 2,18E-04	D -2,89E+00 -2,87E+00 -2,36E-03 -1,88E-02 -3,74E-02 -1,59E-02 -1,91E-04 -3,81E-03		
	Indicator Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial		Unit kg CO2 - eq kg P - eq kg N - eq mol N - eq	B4 0 0 0 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05 3,57E-08 4,77E-04 1,18E-06 1,04E-04 1,16E-03	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05 1,52E-08 1,76E-03 3,64E-06 8,00E-04 8,51E-03	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05 2,68E-08 6,11E-04 8,59E-07 2,18E-04 2,42E-03	D -2,89E+00 -2,87E+00 -2,36E-03 -1,88E-02 -3,74E-02 -1,59E-02 -1,91E-04 -3,81E-03 -3,97E-02		
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial POCP	k	Unit kg CO2 - eq kg P - eq kg N - eq mol N - eq g NMVOC - eq	B4 0 0 0 0 0 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05 3,57E-08 4,77E-04 1,18E-06 1,04E-04 1,16E-03 4,57E-04	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05 1,52E-08 1,76E-03 3,64E-06 8,00E-04 8,51E-03 2,19E-03	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05 2,68E-08 6,11E-04 8,59E-07 2,18E-04 2,42E-03 6,95E-04	D -2,89E+00 -2,87E+00 -2,36E-03 -1,88E-02 -3,74E-02 -1,59E-02 -3,81E-03 -3,97E-02 -1,59E-02		
	Indicator Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-FreshWater EP-Terrestial POCP ADP-minerals&metals ¹	k	Unit kg CO2 - eq kg P - eq kg N - eq mol N - eq g NMVOC - eq kg Sb-eq	B4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05 3,57E-08 4,77E-04 1,18E-06 1,04E-04 1,16E-03 4,57E-04 2,64E-06	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05 1,52E-08 1,76E-03 3,64E-06 8,00E-04 8,51E-03 2,19E-03 8,47E-07	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05 2,68E-08 6,11E-04 8,59E-07 2,18E-04 2,42E-03 6,95E-04 1,50E-06	D -2,89E+00 -2,36E-03 -1,88E-02 -3,74E-02 -1,59E-02 -3,81E-03 -3,97E-02 -1,59E-02 -1,59E-02		
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Terrestial POCP ADP-minerals&metals ¹	k	Unit kg CO2 - eq kg P - eq kg N - eq mol N - eq g NMVOC - eq kg Sb-eq MJ	B4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 1,48E-01 1,48E-01 6,34E-05 4,51E-05 3,57E-08 4,77E-04 1,18E-06 1,04E-04 1,16E-03 4,57E-04 2,64E-06 2,41E+00	C3 1,42E+01 6,91E-01 1,35E+01 3,48E-05 1,52E-08 1,76E-03 3,64E-06 8,00E-04 8,51E-03 2,19E-03 8,47E-07 1,42E+00	C4 8,63E-02 8,63E-02 6,47E-05 2,61E-05 2,68E-08 6,11E-04 8,59E-07 2,18E-04 2,42E-03 6,95E-04 1,50E-06 1,98E+00	D -2,89E+00 -2,37E+00 -2,36E-03 -1,88E-02 -3,74E-02 -1,59E-02 -3,81E-03 -3,97E-02 -1,59E-02 -1,59E-02 -1,59E-02 -1,59E-02		

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Additional er	Additional environmental impact indicators										
	Indicator	Unit		A1-A3	A4	A5	B2	B3			
	PM	Disease incidence	Disease incidence		5,40E-08	0	1,31E-08	0			
()~() B	IRP ²	kgBq U235 -eq		4,78E+00	1,61E-02	0	3,16E-02	0			
42	ETP-fw ¹	CTUe		6,39E+02	7,19E+00	0	4,95E+00	0			
40.* ****	HTP-c ¹	CTUh		2,43E-07	0,00E+00	0	7,39E-10	0			
22 E	HTP-nc ¹	CTUh		5,40E-07	1,20E-08	0	1,64E-08	0			
è	SQP ¹	dimensionless		6,03E+02	9,18E+00	0	1,28E+00	0			
h	ndicator	Unit	B4	C1	C2	C3	C4	D			
	PM	Disease incidence	0	0	1,36E-08	3,37E-08	1,12E-08	-4,52E-07			
(ini) E	IRP ²	kgBq U235 -eq	0	0	1,05E-02	3,38E-03	7,92E-03	-3,85E-02			
	ETP-fw ¹	CTUe	0	0	1,76E+00	7,22E+00	1,16E+00	-1,71E+02			
40.* ***	HTP-c ¹	CTUh	0	0	0,00E+00	8,61E-10	4,20E-11	-1,21E-08			
98 E	HTP-nc ¹	CTUh	0	0	1,70E-09	1,78E-08	1,10E-09	2,08E-07			
è	SQP ¹	dimensionless	0	0	2,76E+00	2,70E-01	4,32E+00	-5,06E+01			

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	Indicator		Ur	nit	A1-A3	A4	A5	B2	B3
i i i i i i i i i i i i i i i i i i i	PERE		MJ		1,57E+02	2,23E-01	0	6,21E-01	0
	PERM	PERM		MJ		0,00E+00	0	0,00E+00	0
° ₹ı	PERT	PERT		IJ	2,38E+02	2,23E-01	0	6,21E-01	0
Ð	PENRE		Ν	IJ	5,47E+02	4,93E+00	0	4,57E+00	0
eş.	PENRM		Ν	IJ	-2,31E+00	0,00E+00	0	0,00E+00	0
IA	PENRT		Ν	IJ	5,45E+02	4,93E+00	0	4,57E+00	0
	SM		k	g	6,00E+00	0,00E+00	0	0,00E+00	0
<u>L</u>	RSF		Ν	IJ	5,21E-01	7,25E-03	0	4,98E-02	0
1. Alexandre and a second seco	NRSF		MJ		7,34E-01	2,50E-02	0	4,91E-02	0
(%)	FW		m ³		5,51E-01	2,01E-03	0	7,85E-01	0
I	ndicator	Unit	t	B4	C1	C2	C3	C4	D
î,	PERE	MJ		0	0	3,03E-02	5,90E-02	3,66E-02	-4,70E+01
A.	PERM	MJ		0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
° ₹ s	PERT	MJ		0	0	3,03E-02	5,90E-02	3,66E-02	-4,70E+01
B	PENRE	MJ		0	0	2,41E+00	1,42E+00	1,98E+00	-2,72E+01
.Åa	PENRM	MJ		0	0	0,00E+00	-7,89E+01	0,00E+00	0,00E+00
IA	PENRT	MJ		0	0	2,41E+00	-7,74E+01	1,98E+00	-2,72E+01
	SM	kg		0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	RSF	MJ		0	0	1,06E-03	1,26E-03	9,70E-04	7,71E-02
1.	NRSE	MJ		0	0	3,55E-03	0,00E+00	7,20E-02	-2,15E-01
	11101								

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; SM = Use of secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

nd of life - Waste											
		U	nit	A1-A3	A4	A5	B2	B3			
	HWD	HWD		kg		6,91E-04	0	8,64E-04	0		
Ū	NHWD	NHWD		kg		7,32E-01	0	5,55E-02	0		
%	RWD		k	g	6,61E-03	1,97E-05	0	2,68E-05	0		
In	dicator		Unit	B4	C1	C2	C3	C4	D		
A	HWD		kg	0	0	1,32E-04	0,00E+00	7,71E+00	-1,26E-02		
Ū	NHWD		kg	0	0	2,09E-01	6,30E-02	7,00E-02	-1,14E+00		
2	RWD		kg	0	0	1,64E-05	0,00E+00	1,21E-05	-3,20E-05		

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow											
Ind	icator	Un	it	A1-A3	A4	A5	B2	B3			
¢۵	CRU	kç	9	0,00E+00	0,00E+00	0	0,00E+00	0			
480	MFR	kg	9	4,04E+00	0,00E+00	0	0,00E+00	0			
DF3	MER	kç)	5,59E-01	0,00E+00	0	0,00E+00	0			
₽>	EEE	М	J	3,53E-01	0,00E+00	0	0,00E+00	0			
DB	EET	М	J	5,34E+00	0,00E+00	0	0,00E+00	0			
Indicato	or	Unit	B4	C1	C2	C3	C4	D			
ÔD	CRU	kg	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
\$D	MFR	kg	0	0	0,00E+00	3,94E+00	0,00E+00	0,00E+00			
Þ₽	MER	kg	0	0	0,00E+00	1,99E+01	0,00E+00	0,00E+00			
₽D	EEE	MJ	0	0	0,00E+00	6,14E+00	0,00E+00	0,00E+00			
	EET	MJ	0	0	0,00E+00	9,30E+01	0,00E+00	0,00E+00			

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content

biogenie carbon content		
Indicator	Unit	At the factory gate
Biogenic carbon content in product	kg C	3,67E+00
Biogenic carbon content in accompanying packaging	kg C	0,00E+00

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Sweden (kWh)	ecoinvent 3.6	54,94	g CO2-eq/kWh

Dangerous substances

The product contains substances given by the REACH Candidate list that are less than 0,1 % by weight.

Indoor environment

The product is low-emitting and tested and approved according to ANSI/BIFMA M7.1_2011.

Additional Environmental Information

Key Environmental Indicators

Key environmental indicators	Unit	A1-A3	A4	A1-C4	A1-D
GWPtotal	kg CO ₂ -eq	25,52	0,23	40,42	37,53
Total energy consumption	MJ	705,83	5,18	722,32	648,01
Amount of recycled materials	%	27,13			

Additional environmental impact indicators required in NPCR Part A for construction products								
Indicator	Unit		A1-A3	A4	A5	B2	B3	
GWPIOBC	kg CO ₂ -eq	kg CO ₂ -eq		2,33E-01	0	2,69E-01	0	
Indicator	Unit	B4	C1	C2	C3	C4	D	
GWPIOBC	kg CO ₂ -eq	0	0	1,48E-01	6,24E-01	8,71E-02	-4,05E+00	

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Variants and Options

Key environmental indicators (A1-A3) for variants of this EPD							
Variants		GWPtotal (kg CO ₂ - eq)	Total energy consumption (MJ)	Amount of recycled materials (%)			
Oberon Pillar table OBPL70, Ø700 mm, height 550 mm, laminate finish	19,40	23,52	675,52	28,15			
Oberon Pillar table OBPL70, Ø700 mm, height 550 mm, veneer finish	19,00	22,71	662,89	26,61			
Oberon Pillar table OBPL70, Ø700 mm, height 550 mm, HPL finish	18,40	26,20	681,70	26,56			
Oberon Pillar table OBPL90 Ø900 mm, height 550 mm, laminate finish	24,50	17,75	775,34	31,68			
Oberon Pillar table OBPL110 Ø900 mm, height 550 mm, laminate finish	30,80	10,92	903,74	34,36			
Oberon Pillar table OBPL77, 700X700 mm, height 550 mm, laminate finish	19,10	24,36	676,64	27,78			
Oberon Pillar table OBPL88, 800X800 mm, height 550 mm, laminate finish	21,40	21,24	714,84	29,74			
Oberon Gas Pillar table OBPG77, 700x700 mm, height 710-1125 mm, laminate finish	23,10	46,87	1040,08	20,36			
Oberon Pillar table OBPN77, 700X700 mm, height 900 mm, laminate finish	20,50	28,16	734,52	25,95			
Oberon Pillar table OBPH77, 700X700 mm, height 1050 mm, laminate finish	21,10	29,87	760,37	25,26			
Oberon Conference table OBPM200CO, 2000x1200 mm, height 740 mm, laminate finish	66,20	73,66	2449,18	34,14			
Oberon Conference table OBPM1809, 1800x900 mm, height 740 mm, laminate finish	50,20	40,48	1625,00	30,76			
Oberon Conference table OBPM2412-9, 2400x1200 mm, height 740 mm, laminate finish	75,10	36,10	2309,51	36,39			
Oberon Conference table OBPM280CO, 2800x1200 mm, height 740 mm, laminate finish	81,40	57,07	2746,25	36,12			

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Ruud et al., (2023) EPD generator for NPCR026 Part B for Furniture - Background information for EPD generator application and LCA data, LCA.no report number 01.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge. NPCR 026 Part B for Furniture. Ver. 2.0 March 2022, EPD-Norge.

and norge	Program operator and publisher		+47 977 22 020	
Sepa-norge	The Norwegian EPD Foundation		post@epd-norge.no	
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no	
Kinnarps_	Owner of the declaration:	Phone:	+46 515 381 21	
	Kinnarps AB		johanna.ljunggren@kinnarps.se	
	Industrigatan, 521 88 Kinnarp, Sweden	web:	kinnarps.com	
LCA	Author of the Life Cycle Assessment	Phone:	+47 916 50 916	
	LCA.no AS	e-mail:	post@lca.no	
.no	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no	
\frown	Developer of EPD generator	Phone:	+47 916 50 916	
(LCA)	LCA.no AS	e-mail:	post@lca.no	
	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no	
	ECO Platform	web:	www.eco-platform.org	
	ECO Portal	web:	ECO Portal	